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An analysis of mixtures using amperometric biosensors
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This paper presents a sensor system based on a combination of an amperometric
biosensor acting in batch as well as flow injection analysis with the chemometric data
analysis of biosensor outputs. The multivariate calibration of the biosensor signal was
performed using artificial neural networks. Large amounts of biosensor calibration as
well as test data were synthesized using computer simulation. Mathematical and cor-
responding numerical models of amperometric biosensors have been built to simulate
the biosensor response to mixtures of compounds. The mathematical model is based
on diffusion equations containing a non-linear term related to Michaelis–Menten kinet-
ics of the enzymatic reaction. The principal component analysis was applied for an
optimization of calibration data. Artificial neural networks were used to discriminate
compounds of mixtures and to estimate the concentration of each compound. The pro-
posed approach showed prediction of each component with recoveries greater that 99%
in flow injection as well as in batch analysis when the biosensor response is under diffu-
sion control.
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1. Introduction

Biosensors are devices that combine the selectivity and specificity of a bio-
logically active compound with a signal transducer and an electronic amplifier
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[1–3]. The transducer converts the biochemical signal to an electronic one. The
biosensor signal is proportional to the concentration of a measured analyte or a
group of analytes. The amperometric biosensors measure the current on an indi-
cator electrode due to direct oxidation of the products of the biochemical reac-
tion. In case of the amperometric biosensors, the potential at the electrode is
held constant while the current flow is measured. The amperometric biosensors
are reliable, relatively cheap and sensitive enough for environment, clinical and
industrial purposes [4,5].

Traditionally, changing biological process variables have been treated sepa-
rately and systematically [6,7]. In recent years, analytical multivariate methods
have introduced refined ways to handle complex signal inputs and to interpret
their relations to selected observations [8–11]. Methods such as artificial neu-
ral networks [12–14] become powerful tools for experimental data analysis to
improve sensitivity and selectivity of sensor systems [15–17].

Data collected from complicated samples or in complex processes contains
variation from any sources and of several types. Pre-processing methods can be
applied in such situations to enhance the relevant information to make result-
ing models simpler and easier to interpret. The principal component analysis
(PCA) allows us to achieve acceptable computing times; the experimental data
are therefore efficiently compressed without losing any important information
[18–22]. Accordingly, coupling biosensors with artificial neural networks is grow-
ing in importance as a tool for multi-component analyses [23–28].

This paper presents a sensor system based on a combination of an ampero-
metric biosensor with the chemometric data analysis of biosensor outputs. Both
modes of analyte analysis: batch (BA) and flow injection (FIA) are supported
[29]. Artificial neural networks are used for the multivariate calibration of the
biosensor signal. Data for biosensor calibration are synthesized using computer
simulation. The synthesized data are allocated into two different data sets: a cal-
ibration set, with which the PCA is performed, and a test set, which is used for
assessing the results of the calibration.

An accurate and reliable calibration of the system as well as the proper test
of the methods of chemometrics requires a lot of experimental data. Mathemat-
ical and corresponding numerical models of amperometric biosensors were built
to generate pseudo experimental biosensor responses to mixtures of compounds.
The models are based on non-stationary diffusion equations [30] containing a
non-linear term related to Michaelis–Menten kinetics of the enzymatic reaction.
The digital simulation was carried out using the finite difference technique [31,
32]. Assuming good enough adequacy of the mathematical model to the physi-
cal phenomena, the data synthesized using computer simulation were employed
instead of experimental ones. The computer simulation of the physical experi-
ment is usually much cheaper and faster than the physical one. The computer
simulation is especially reasonable when the biosensors to be used in practice are
in a stage of development. Then the development of smart biosensors to be used
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in biochemical systems and the development of effective methods of data analy-
sis may be carried out in parallel.

The proposed system was applied to discriminate compounds of mixtures
and to estimate the concentration of each compound. The neural network was
calibrated and validated for mixtures of four specific analytes of eight different
concentrations. The numerical experiments showed good prediction of each com-
ponent.

In the case of FIA, the concentrations of each compound were determined
with recoveries greater than 99%. Very similar recoveries of concentrations were
obtained also in batch analysis when the mass transport by diffusion controls the
biosensor response, that is, when the diffusion modulus is greater than unity. In
batch analysis, when enzyme kinetics controls the biosensor response, the con-
centrations were determined with recoveries between 58 and 87%.

2. Mathematical model

We consider an enzyme-catalysed reaction

Sk
E−→ Pk, k = 1, . . . , K, (1)

where the mixture of substrates (components) (Sk, k = 1, . . . , K) binds to the
enzyme (E) to form enzyme–substrate complex. While it is a part of this com-
plex, the substrate Sk is converted to the product Pk. The rate of the reaction is
the rate of appearance of the product. This rate is known to depend upon the
concentration of substrate.

An amperometric biosensor can be treated as enzyme electrode, having a
layer of enzyme immobilized onto the surface of the probe. Assuming no inter-
action between analysed substrates (compounds) of the mixture, the symmetrical
geometry of the electrode, homogeneous distribution of immobilized enzyme in
the enzyme membrane, and considering one-dimensional diffusion, coupling of
enzyme reaction with the diffusion described by Fick’s law leads to the follow-
ing equations:

∂S(k)

∂t
= D

(

Sk)
∂2S(k)

∂x2
− V

(k)
maxS

(k)

KM + S(k)
, 0 < x < d, 0 < t � T , (2)

∂P (k)

∂t
= D

(k)

P
∂2P (k)

∂x2
+ V

(k)
maxS

(k)

KM + S(k)
, 0 < x < d, 0 < t � T ,

k = 1, . . . , K, (3)

where K is the number of compounds, V
(k)

max is the maximal enzymatic rate of
biosensor attainable with that amount of enzyme, when the enzyme is fully sat-
urated with substrate (component) Sk, KM is the Michaelis constant, S(k) is the
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concentration of substrate Sk, P (k) is the concentration of the reaction product
Pk, d is the thickness of the enzyme layer, t is time, T is the duration of bio-
sensor operation, and D

(k)

S and D
(k)

P are diffusion coefficients of the substrate Sk

and product Pk, respectively, k = 1, . . . , K, [3,33,34].
The biosensor operation starts when some substrate appears over the sur-

face of the enzyme layer. This is used in the initial conditions (t = 0)

S(k) (x, 0) =
{

0, 0 � x < d,

S
(k)

0 , x = d,
(4)

P (k)(x, 0) = 0, 0 � x � d,

k = 1, . . . , K, (5)

where S
(k)

0 is the concentration of substrate Sk over the biosensor (in bulk
solution).

Because of electrode polarization, the concentration of the reaction products
at the electrode surface is being permanently reduced to zero. If the analyte
is well stirred and in powerful motion, then the diffusion layer (0 < x < d)
remains at a constant thickness. Consequently, the concentration of substrates
as well as products over the enzyme surface (bulk solution/membrane interface)
remains constant while the biosensor contact with the substrate. In the FIA, the
biosensor contacts the substrate for only a short time [29]. When the analyte
disappears, a buffer solution swills the enzyme surface, reducing the substrate
as well as product concentration at this surface to zero. Because of substrates
remaining in the enzyme membrane, the mass diffusion as well as the reaction
still continues for some time even after disconnecting of the biosensor and sub-
strate. This is used in the boundary conditions (0 < t � T ) given by

∂S(k)

∂x

∣∣∣∣
x=0

= 0, (6)

S(k) (d, t) =
{

S
(k)

0 , t � TF,

0, t > TF,
(7)

P (k)(0, t) = P (k)(d, t) = 0,

k = 1, . . . , K, (8)

where TF is the time of injection.
In the BA, the modelled biosensor remains immersed in the substrate all

the analysing time. Assuming TF = T, the model expressed by (2)–(8) may be
accepted for BA as well. In the BA, the boundary condition (7) reduces to
S(k)(d, t) = S

(k)

0 , t � T .
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The current is measured as a response of a biosensor in a physical exper-
iment. The biosensor current depends upon the flux of reaction product at the
electrode surface, that is, at border x = 0. Consequently, the density I (k)(t) of the
biosensor current at time t can be obtained explicitly from Faraday’s law

I (k)(t) = neFD
(k)

P
∂P (k)

∂x

∣∣∣∣
x=0

k = 1, . . . , K, (9)

where ne is a number of electrons involved in a charge transfer at the electrode
surface, and F is Faraday constant. Assuming the overall biosensor response
to a mixture represents the sum total of individual responses to each constitu-
ent substrate and having values of the current I (k)(t) for all compounds, k =
1, . . . , K, the common density I ∗(t) of the biosensor current can be calculated
additively

I ∗(t) =
K∑

k=1

I (k)(t). (10)

3. Solution of the problem

Analysing the problem (2)–(8), one can notice that there is no direct rela-
tionship between pairs of the unknown variables S(k1), P (k1) and S(k2), P (k2),
when k1 �= k2, k1, k2 = 1, . . . , K. Because of this, the initial and boundary
value problem (2)–(8), which consists of 7 K equations can be split to K

problems, containing only seven equations (2)–(8) at given k, k = 1, . . . , K. The
problem (2)–(8), formulated for given k1 (component Sk1 ), can be solved individ-
ually and independently from the problem, formulated for another component
Sk2, k1, k2 = 1, . . . , K, k1 �= k2.

We assume the problem (2)–(8) formulation for a single substrate S = Sk and
reaction product P = Pk, k = K = 1. Let Vmax be the maximal enzymatic rate of
the modelled biosensor, S is the concentration of the substrate S and P is the
concentration of the reaction product P.

The problem (2)–(8), formulated for a single substrate S and reaction prod-
uct P, was solved numerically using the finite difference technique [31–36].

In the common case of K components, having responses of the biosensor
to each constituent component, equation (10) allows us to calculate the com-
mon biosensor response to the mixture of K components [37]. Consequently, to
obtain values I ∗(tj ), j = 0, . . . , N, t0 = 0, tN = T , of the common biosensor cur-
rent, it is required to

(1) run computer simulation K times to obtain values I (k)(tj )

of the biosensor current for each component of the mixture,
K = 1, . . . , K, j = 1, . . . , N ;
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(2) calculate the common biosensor current as defined in (10).

In step (1), only values of the parameters D
(k)

S , D
(k)

P , V
(k)

max, and S
(k)

0 vary when
one computer simulation changes the next one. This procedure of computation
is valid for both regimes: BA and FIA.

4. Generation of data sets

The computer simulation software developed was employed to generate
data for a calibration of an amperometric biosensor. The biosensor was cal-
ibrated for mixtures of four (K = 4) components. Each component of eight
(M = 8) different concentrations was employed in the calibration to have the bio-
sensor response to a wide range of substrate concentrations. Because of this, it
was required to solve the problem (2)–(8) for given component Sk numerically
K ×M = 4×8 = 32 times at four different values of the maximal enzymatic rate
V

(k)
max and eight values of the substrate concentration S

(k)

0 .
The following values of the model parameters were assumed constant in the

all numerical experiments:

D
(k)

S = D
(k)

P = 3 × 10−6 cm2/s, k = 1, . . . , K,

KM = 10−7 mol/cm3
, ne = 2. (11)

Each component of the mixture was characterized by the individual maxi-
mal enzymatic rate V

(k)
max:

V (k)
max = 10−6−k mol/cm3 s, k = 1, . . . , K. (12)

To have the biosensor responses for a wide range of the analyte concen-
tration, the following values of the concentration S

(k)

0 of each of K substrates
S1, . . . , SK of the mixture were employed:

S
(k)

0 ∈ {
S0,m : S0,m = αm × S0, m = 1, . . . , M

}
, k = 1, . . . , K, (13)

S0 = 10−8 mol/cm3
, K = 4, M = 8,

α1 = 1, α2 = 2, α3 = 4, α4 = 8, α5 = 12, α6 = 16, α7 = 32, α8 = 64.

The biosensor response considerably depends upon being the response
under the enzyme kinetics either the mass transport by diffusion control [2,3,
34,38]. The biosensor response is controlled by the diffusion if the enzymatic
reaction in the enzyme membrane is faster than the mass transport process, that
is, when the dimensionless diffusion modulus is much greater than unity. We
express the diffusion modulus for the enzyme reaction with the substrate Sk (k =
1, . . . , K) as a function of the membrane thickness d

σ 2
k (d) = V

(k)
maxd

2

D
(k)
S KM

≈ 0.33 × 107−kd2. (14)
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To validate the methods of chemometrics more comprehensively, in calcula-
tions we employed two enzyme membranes with different thickness d : 0.02 and
0.05 cm. We notice that σ 2

k (0.02) > 1 for k = 1, 2, 3 and σ 2
4 (0.02) < 1, that is, in

the case of d = 0.02 cm, the biosensor response is under dual control: by the
diffusion (for components S1, S2, S3) and the enzyme kinetics (S4). The another
thickness d = 0.05 cm was chosen so that σ 2

k (0.05) > 1 for k = 1, . . . , 4. In the
case of d = 0.05 cm, the response is controlled by the diffusion.

Values of two parameters TF and T depend considerably on the regime of
analysis and the membrane thickness d. In FIA, due to the disappearance of the
current, time T was considerably less than in BA. In the case of d = 0.02 cm, we
employed T = 300 s, TF = T in BA, while T = 150 s, TF = 10 s in FIA. In the
case of thicker membrane (d = 0.05 cm), we accepted T = 500 s as the response
time for BA.

In simulation of the biosensor response for all the values defined in (13),
only values of two parameters V

(k)
max and S

(k)

0 vary when one computer simula-
tion changes the next one. In addition, every computer simulation was repeated
twice to simulate biosensor response in batch as well as flow injection mode at
different values of TF and T .

Let I (k)
m (tj ) be a value of density I (k)(tj ) of the biosensor current at concen-

tration S
(k)

0 = S
(k)

0,m of substrate Sk, m = 1, . . . , M; j = 1, . . . , N; k = 1, . . . , K.
Having M numerical solutions (M sets of biosensor response values) I (k)

m (tj ), j =
1, . . . , N for each k = 1, . . . , K (in total K × M solutions), the full factorial
I ∗

�m(tj ) = Im1,...,mK
(tj ) of MK = 84 = 4096 solutions can be produced additively

I ∗
�m(tj ) =

K∑
k=1

I (k)
mk

(tj ), �m = (m1, . . . , mK), mk = 1, . . . , M; j = 1, . . . , N.

(15)

During the computer simulation, values of the biosensor current were
stored in a file every second of simulation. Thus, N = T values of I (k)

m (tj ), tj = j

(s), j = 1, . . . , N , for each K = 1, . . . , K and m = 1, . . . , M were produced as a
result of the computer simulation of the biosensor response (in total K ×M ×N

values). Later, using an additional simple utility of summation, a matrix MK ×N

of the biosensor response data were produced following (15) and stored in a file
which was passed for chemometrics. This was repeated for batch as well as flow
injection regimes.

Results of the calculations are depicted in figures 1 and 2. Figure 1 shows
every 64th of full factorial of MK simulated biosensor responses for K = 4 values
of the maximal enzymatic rate and M = 8 substrate concentrations in a case of
BA. Figure 2 presents generated biosensor responses in FIA. Evolution of bio-
sensor currents are depicted for the first 100 s of biosensor action only because
of a petty change of the biosensor current at greater values of time t .
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The calculation showed that the maximal biosensor current increases with
increase of the maximal enzymatic rate Vmax. The time of the maximal biosensor
current decreases with increase of Vmax. This property is valid for both regimes
of analysis: batch and flow injection. In BA, the maximal biosensor current is
the steady-state current. Figure 2 shows, that the current function I ∗(t) is not
monotonous in FIA. The time of maximal current occurs noticeably later after
the time TF = 10 s of analyte removing. The time when the current starts to
decrease varies between 19 and 24 s.

5. Determination of component concentrations using an artificial neural
network

Let �c = (c1, . . . , cK) be a vector of concentrations of K components of a
mixture and �z = �z(�c) = (z1(�c), . . . , zN(�c)) = (

I ∗
�c (t1), . . . , I

∗
�c (tN)

)
be a vector of

the biosensor currents measured at times t1, . . . , tN . Thus, �z defines a response
of the biosensor to the mixture of K components of concentrations �c. Our goal
is to define a non-linear map N, such as N(�z) = �c. The class of feed-forward
neural networks (FNN) was chosen to approximate the map N [13,39].

While an artificial neural network provides a non-linear approach that
needs no a priori knowledge of functional dependencies, it requires training.
Training is based upon cumulative experimental data. An accurate and reli-
able calibration of the system as well as the proper test of the methods of
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Figure 1. Every 64th biosensor response curve of full factorial of MK responses at K = 4 values of
the maximal enzymatic rate and M = 8 substrate concentrations in batch analysis, d = 0.02 cm.
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Figure 2. Every 64th biosensor response curve of full factorial of MK responses at K = 4
values of the maximal enzymatic rate and M = 8 substrate concentrations in flow injection

analysis, d = 0.02 cm.

chemometrics requires a lot of experimental data. Assuming good enough ade-
quacy of the mathematical model to the physical phenomena, the data synthe-
sized using computer simulation may be employed instead of experimental one.
The computer simulation of experiments is usually much cheaper and faster than
the physical one. The computer simulation is especially reasonable when biosen-
sors to be used in practice are in a stage of development. Then the development
of smart biosensors to be used in biochemical systems and the development of
effective methods of data analysis may be carried out in parallel.

5.1. Input data compression

Data collected in complicated processes contains a lot of redundant infor-
mation, since the variables are collinear. Pre-processing methods can be applied
in such situations to enhance the relevant information to make resulting models
simpler and easier to interpret. Two different approaches were applied to reduce
the dimensionality of the vector �z of input data: the correlation coefficients anal-
ysis (CCA) and the PCA.

With CCA, the correlation coefficients are calculated for every point of the
input vector �z and each component of the mixture. Based on the calculated cor-
relation coefficients, only a few points of �z with the highest values of the coeffi-
cients are accepted as inputs to a neural network. Therefore, every vector �z of
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the original data is replaced with a resulting vector �x, having the dimensionality
J, J � N . Each element of the resulting vector �x belongs also to �z. However,
a lot of elements of �z are usually missing in �x. The CCA resulting vector �x is
passed to a neural network.

With the more advanced PCA, the so-called principal components are
extracted, which are statistically independent from each other and which are
therefore orthogonal relative to one another, yet are still capable of adequately
reconstructing the original data [18,19]. Using PCA, the input data �z are
expressed as a linear combination of a few basic vectors, were the basic vectors
capture as much variation of original data as possible. The purpose of PCA is to
find basic vectors �w1, . . . , �wJ , J � N , for i = 1, . . . , J , satisfying the following
conditions:

(1) E{ �wT
i �z}2 are maximized under the constraints,

(2) �wT
i �wj = δij , for j = 1, . . . , i,

where E stands for an expectation operator, N is the number of measure-
ments of biosensor current during the biosensor operation and the superscript
T indicates transposition. The vectors �w1, . . . , �wJ satisfying that conditions can
be found as dominant eigenvectors of the data covariance matrix � = E{�z�zT}.
Therefore, each vector �z of original data can be represented by its principal
component vector �x having dimensionality J, J � N . In the cases of large
dimensionality of input vector �z, the dimensionality of the resulting vector �x is
usually significantly less than the dimensionality of �z, J � N . There exist some
rules of thumb on how many dimensions to use, such as keeping all dimensions
whose contribution to the total variation exceed 80%. The PCA resulting vector
�x is passed to a neural network.

5.2. Artificial neural network set-up

Several network topologies were applied in preliminary experiments, whereby
networks with two hidden layers were accepted in the cases when CCA is used
to reduce the dimensionality of the input vector, while a single hidden layer was
accepted in the cases when input data are corrected with the PCA.

Figure 3 shows a three-layered multi-input and multi-output FNN. The first
layer is the input layer with J nodes. Each input neuron represents a response
of a biosensor to a mixture. The second layer is the hidden layer consisting of p

nodes with sigmoid functions as their activation (transfer) functions. The third
layer is the output layer comprises K nodes with linear functions. Each out-
put neuron represents a concentration of the mixture component. The non-linear
mapping from �x to �c, �c = (c1, . . . , cK), can be expressed as follows
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Figure 3. Schematic diagram of three-layer artificial neural network, where x1, . . . , xJ are values of
the biosensor current and c1, . . . , cK are the determined concentrations of mixture components.

ck =
p∑

s=1

αs,kϕ
(〈

�βT
s , �x

〉
+ γs

)
+ εk, k = 1, . . . , K, (16)

where ck is the output of kth output node expressing the concentration of
kth component of the mixture, p is number of nodes in the hidden layer;
αsk, �βs, γs, εk are the weights and ϕ is the activation function. The sigmoid (logis-
tic) function was employed as the activation function ϕ, that is, ϕ ((u) = 1/(1 +
exp(−u)). The number p of nodes in the hidden layer was chosen basing on the
thumb rules. Having L observations (elements) in the learning set, the degree of
freedom in the neural network should not exceed 0.1 × L, that is, (p + 1) × K +
p(J + 1) < 0.1 × L.

The neural network was trained by the supervised batch learning procedure
that requires a set of examples for which the desired network response is known.
The learning of the network was carried out comparing the calculated target val-
ues and the desired outputs by means of calculation of the sum square error. In
the learning, values of the weights αsk, �βs, γs, εk, s = 1, . . . , p, k = 1, . . . , K, are
updated after the whole training data set has been passed for the network.

An advanced variant of back-propagation (BP) algorithm called Leven-
berg–Marquardt (LM) was used to optimize the process of learning [40]. BP is
one of the most commonly used training algorithms and LM is one of the fastest
variants of BP for networks of moderate size [41]. It is important for learning,
that values of �bs, s = 1, . . . , p, are the same for all k = 1, . . . , K. The resulting
network is able to generalize (give a good response) when presented with cases
not found in the set of examples.

The forecasting quality of concentration ym = S
(k)

0,m of each component
Sk, k = 1, . . . , K, m = 1, . . . , M, was estimated by the mean parameter
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(percentage of true interval predictions)

Qk = 1
L

L∑
i=1

Ind
(
Oi,k ∈ 
y

) · Ind
(
Ci,k = y

) · 100%, (17)

where the indicator function Ind
(
Oi,k ∈ 
y

)
equals unity when kth output of the

network belongs to the interval (y − δ1,y, y + δ2,y) of concentrations, and zero
otherwise, L is a number of observations in calibration or test set.

6. Results and discussion

To achieve acceptable computing times, the generated pseudo-experimental
data were therefore efficiently compressed with the aid of CCA as well as PCA.
During calibration, the input data are allocated to two different data sets:

(1) calibration set (C-set), with which the compression is performed;

(2) test set (T-set), which is used for assessing the results of the calibration.

The data sets, which were generated by measuring mixtures of all the com-
ponents, are based on the full factorial designs, ensuring that no constraint of a
constant total concentration of the analytes is presented for the calibration. It is
a crucial point when using neural networks for data analysis to validate the cali-
bration by independent test data. On the other hand, the chosen samples for the
calibration set must be independent from the test set. Because of this, C-set was
constructed in random order.

The total set of full factorial of MK = 84 = 4096 responses was split ran-
domly into C and T sets having approximately the same number of responses. A
total of 2000 response curves were chose independently as a T-set. The remain-
ing 2096 samples were accepted as a learning (C) set.

6.1. Correlation coefficients analysis

The CCA was applied to C-set of responses calculated at d = 0.02 cm
for both regimes of analysis: batch and flow injection. For every point of the
input vector �z ∈ C-set and each component we calculated the correlations. The
points with the highest correlation coefficients were used as inputs to the neu-
ral networks. Let �z = (z1, z2, . . . , zN ) be a vector of the points on the response
and ρ(ck, zi) the correlation coefficient for the compounds ck and the point
zi, 1 � i � N, 1 � k � K.

In the case of BA, when d = 0.02 cm and N = 300, the calculated highest
values are: ρ(c1, z2) = 0.9886, ρ(c1, z3) = 0.9794, ρ(c1, z75) = 0.6683, etc. Vectors
having only six points �x = (x1, . . . , xJ ) = (z2, z3, z75, z77, z295, z297), J = 6, were
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accepted as inputs to a neural network. The network with two hidden layers was
chosen. In the first hidden layer there were 16 neurons and in the second—eight
neurons. Because of six input points, the input layer consists of six nodes. Due to
mixtures of four components used in the analysis, the output layer was of four
nodes.

Using (17), the forecasting quality Qk of concentration y = S
(k)

0,m of the
mixture component Sk, k = 1, . . . , K, m = 1, . . . , M, was estimated by
the mean parameter accepting the intervals 
 = 
1 of the prediction accuracy.
The intervals 
1 are defined in Table 1. Corresponding values Qk of the fore-
casting quality are presented in Table 2.

On can see in Table 1, the designed neural network well enough esti-
mates the concentrations of three components only. The concentration of the
component S4 is estimated with forecasting quality less than 40%, Q4 = 38.8%
at learning set and 36.9% at T-set. In the case of the other three components,
the forecasting quality is grater than 82%, Qk > 82%, at C as well as T-set.

Variation of the recognition quality of different components well correlates
with variation of the diffusion modulus (14). The diffusion modulus is less than
unity for one component (substrate) S4 only, k = 4, σ 2

4 (0.02) < 1. For all other
components the diffusion modulus is greater than unity. To approve the influ-
ence of the diffusion modulus on the quality of estimation of concentrations, we
applied that procedure of estimation to a system having 2.5 times thicker enzyme
membrane, d = 0.05 cm.

Table 1
The accuracy intervals 
1 and 
2 for prediction of the analyte concentration y using forecasting

quality, defined in (17).

y, nmol/cm3 1 2 4 8 12 16 32 64


1 y, nmol/cm3 <1.5 [1.5,3) [3,6) [6,10) [10,14) [14,24) [24,48) � 48

2 y, nmol/cm3 [0,1.5) [1.5,2.9) [3.1,5) [7,9) [11,13) [15,17) [31,33) [63,65)

Table 2
The forecasting quality (17) of concentrations prediction at calibration (C) and test
(T) sets using both accuracies: 
1 and 
2 in batch (BA) and flow injection (FIA)

modes, when input data were processed with CCA.

Component, k BA, 
1, d = 0.02 BA, 
1, d = 0.05 FIA, 
2, d = 0.02

C-set T-set C-set T-set C-set T-set

1 89.88 90.5 98.52 98 100 100
2 92.89 93 98.18 98.9 100 100
3 82.6 82.69 93.46 93.95 100 100
4 38.8 36.9 78.67 78.95 99.95 100
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Values Qk of the forecasting quality at the membrane thickness d = 0.05 cm
are presented also in Table 2. In that case, N = 500 points (z1, . . . , zN ) of each
biosensor response were employed in the analysis. Similarly to the previous case,
after CCA analysis, J = 6 input points (z2, z3, z49, z50, z499, z500), were selected as
inputs for the neural network. The network architecture (6–16–8–4) was the same
as in the case of thinner enzyme membrane.

One can see in Table 2, for the same batch mode of analysis, the fore-
casting values are significantly higher than in the case of thinner enzyme layer,
d = 0.02 cm. In the case of component S4, k = 4, the quality is even more than
two times higher, Q4 ≈ 79%. In all the other cases the forecasting quality is also
better, Qk > 93%, k = 1, 2, 3. Consequently, in batch analysis, the quality of
estimation of the component concentrations can be increased by increasing the
thickness d of the enzyme membrane or, more accurately, by adjusting condi-
tions of the analysis so, that the diffusion modulus increases.

In the analysis of the data obtained in the flow injection regime of the
biosensor operation, distinctly better results of the estimation of concentrations
were achieved. The results remained very good even if the intervals 
 of the pre-
diction accuracy get narrow. The employed intervals 
 = 
2 of the prediction
accuracy are defined in Table 1.

For the processing of FIA data, a neural network with only one hidden
layer containing seven neurons was constructed. In that case N = 150 points
(z1, . . . , zN ) of the biosensor response was employed in the analysis. After CCA
analysis, J = 4 input points (z2, z37, z113, z115), were enough for the input of the
neural network. Results of the calibration and test of the network of architecture
(4–7–4) are presented in Table 2.

One can see in Table 2, the results of concentrations prediction, obtained
on data produced in FIA, are considerably better than the results obtained in
BA. The concentrations of all the components were predicted with recoveries
greater that 99.9%. Let us notice, that such level of recognition quality was
obtained at the membrane thickness d = 0.02 cm, when the diffusion modulus
calculated for component S4 is less than unity, that is the biosensor response is
under enzyme kinetics control.

6.2. Principal component analysis

Application of PCA to the C-sets resulted with six principal components
in all three cases of biosensor operation: (1) BA at membrane thickness
d = 0.02 cm, (2) BA at d = 0.05 cm and (3) FIA at d = 0.02 cm. Due to the PCA,
neural networks having six nodes in input layer were employed. Since mixtures
to be analysed consist of four components, the networks have four nodes in out-
put layer. Additional analysis showed that one hidden layer is enough to achieve
sufficiently good results of concentrations estimation. Twelve nodes in a single
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hidden layer were used in the case of BA when membrane thickness d is 0.02 cm.
In two other cases of BA at d = 0.05 cm and FIA at d = 0.02 cm, eight nodes in
a single hidden layer were enough. Values Qk, k = 1, 2, 3, 4, of the forecasting
quality, calculated for narrower intervals 
2 (see Table 1) of prediction accuracy
are presented in Table 3. For the BA applied at d = 0.02 cm, Table 3 presents
also results of concentrations recognition at wider intervals 
1. The calculated
recognition qualities at the wider intervals 
1 in two other cases (BA at d =
0.05 cm and FIA) were practically the same as at the intervals 
2. Because of
this, these results are missing in Table 3.

Comparing results presented in Table 3 with the results from Table 2, one
can see that in the case of BA, input data pre-processing with the PCA is con-
siderably preferable in comparison with CCA. However, the recognition quality
of biosensor data obtained in FIA is practically the same for both types of input
data pre-processing: CCA and PCA.

7. Conclusions

In the cases when no interaction between components of a mixture the
mathematical model (2)–(8) describes an operation of amperometric biosensors
in BA and FIA. The problem (2)–(8) can be solved numerically for each compo-
nent independently. The common biosensor current is calculated additively from
the individual biosensor responses to each constituent component.

Computer simulation of the biosensor response can be used to generate
pseudo-experimental biosensor responses to mixtures of compounds. Assuming
K is a number of mixture components and M is a number of different con-
centrations of each component, the biosensor response data for full factorial of
mixtures (MK samples) can be synthesized by a simple routine of summation
from the results of K × M computer simulations of the response. The gener-
ated data was employed to calibrate and validate a sensor system based on an

Table 3
The forecasting quality (17) of concentrations prediction at calibration (C) and test (T) sets using
both accuracies: 
1 and 
2 in batch (BA) and flow injection (FIA) modes, when input data were

processed with PCA.

Component, k BA, 
1, d = 0.02 BA, 
2, d = 0.02 BA, 
2, d = 0.05 FIA, 
2, d = 0.02

C-set T-set C-set T-set C-set T-set C-set T-set

1 100 100 100 100 99.9 100 100 100
2 100 100 100 100 99.8 99.8 100 100
3 99.76 99.6 92.56 96 100 100 100 100
4 87.97 86.95 61.16 57.4 99.95 99.9 99.85 99.75
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amperometric biosensor and an artificial neural network. The CCA as well as
the PCA analysis were applied for an optimization of the calibration data.

Artificial neural networks can be successfully used to discriminate compo-
nents of mixtures and to estimate the concentration of each component from the
biosensor response data. In the cases when biosensor operates in BA, the fore-
casting quality of concentrations is considerably higher when the calibration data
is processed using PCA rather than CCA. In FIA, the quality of concentrations
recognition is practically the same for both types of input data pre-processing:
CCA and PCA.

In the case of BA, the prediction quality significantly depends on the bio-
sensor response being under either diffusion or enzyme kinetics control. The
concentration of components is predicted more accurately when the diffusion
modulus is greater than unity, that is, the response is under diffusion control.
Because of this, the enzyme membrane thickness as one of factors determining
the diffusion modulus is of crucial importance for the detection limit of the bio-
sensor system.
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